Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture
نویسندگان
چکیده
Calcium phosphate cements (CPC) are valuable bone fillers. Recently they have been also considered as the basis for drug-, growth factors- or cells-delivery systems. Broad possibilities to manipulate CPC composition provide a unique opportunity to obtain materials with a wide range of physicochemical properties. In this study we show that CPC composition significantly influences cell response. Human bone derived cells were exposed to the several well-characterized different cements based on calcium phosphates, magnesium phosphates and calcium sulfate hemihydrate (CSH). Cell viability assays, live/dead staining and real-time observation of cells in contact with the materials (time-laps) were performed. Although all the investigated materials have successfully passed a standard cytocompatibility assay, cell behavior in a direct contact with the materials varied depending on the material and the experimental system. The most recommended were the α-TCP-based materials which proved suitable as a support for cells in a direct contact. The materials which caused a decrease of calcium ions concentration in culture induced the negative cell response, however this effect might be expected efficiently compensated in vivo. All the materials consisting of CSH had negative impact on the cells. The obtained results strongly support running series of cytocompatibility studies for preclinical evaluation of bone cements.
منابع مشابه
Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteocla...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملThe effect of platelet-rich plasma on human mesenchymal stem cell-induced bone regeneration of canine alveolar defects with calcium phosphate-based scaffolds
Objective(s): Autologous bone transplantation known as the “gold standard” to reconstruction of osseous defects has known disadvantages. This study was designed to explore the effects of hydroxy-apatite/tricalcium-phosphate (HA/TCP) and platelet-rich plasma (PRP) on the osteogenesis ability of human adipose-derived mesenchymal stem cells (hAdMSCs) in vitro and in vivo. Materials and Methods: hA...
متن کاملHow calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements
Nowadays successful regeneration of damaged bone tissue is a major problem of the reconstructive medicine and tissue engineering. Recently a great deal of attention has been focused on calcium phosphate cements (CPCs) as the effective bone fillers. Despite a number of studies regarding CPCs, only a few compare the physicochemical and biological properties of α-TCP based materials of various pha...
متن کاملInvestigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer
This study deals with the effect of gelatin on physical and mechanical properties of calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...
متن کامل